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General second-rank correlation tensors for homogeneous magnetohydrodynamic turbulence
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The properties and structure of second-or@@artesian correlation tensors are derived for the general case
of two solenoidal random vector fields. The theory is intended to describe homogeneous magnetohydrody-
namic turbulence, with no assumed rotational or reflectional symmetries. Each correlation tensor can be written
in terms of four scalar generating functions and the relationship of these functions to the potentials that
generate the poloidal and toroidal components of the underlying vector fields is derived. The physical nature of
the scalar functions is investigated and their true or pseudoscalar character is ascertained. In our general
discussion we clarify several misleading statements dating back to Robertson’s original paper in [Redield
Camb. Philos. So@36, 209(1940]. It is also shown that using the one-dimensional correlation function, it is
possible to obtain spectral information on the induced electric field in directions perpendicular to the measure-
ment direction[S1063-651X%97)09208-9

PACS numbes): 47.27.Gs, 52.65.Kj, 47.6%a

I. INTRODUCTION of solar wind observationgl5].
For hydrodynamics, isotropy and mirror symmetry remain

Turbulence theory makes extensive use of a general teclneasonable approximations in many situations; however, an-
nique, attributed to Robertsdi], for a complete and com- isotropy is expected to become significant in a variety of
pact representation of correlation functions associated with eircumstances. Preferred directions, such as might be associ-
random vector field, such as the velocity field fluctuation inated with rotation, or a large-scale gradient can have impact
homogeneous turbulen¢g]. This theory of invariant tensor on locally homogeneous turbulence, and representation of
structure usually has been applied to highly symmetric situthe correlation tensors must allow for this possibi[i#y16].
ations, most often isotropic turbulenfe-3], and for some Homogeneous turbulence can also depend on higher-order
years has remained a key element in the exposition of bastensor quantities, such as the gradient tensor of a nonuniform
turbulence theory4,5]. The present paper is motivated by mean flow, (see, e.g.[17]), although we do not consider
the need for a clear exposition of the general form of Cartesuch extensions here. In many cases symmetries with respect
sian correlation functions involving two distinct solenoidal to tensor quantities and preferred directions have direct im-
vector fields, say a magnetic field and an incompressible vepact on the structure of the correlation tensors. This is espe-
locity field, with no additional assumptions other than spatialcially true for MHD turbulence for which, in many physical
homogeneity of the second-order correlations. applications, there may be an influential local mean magnetic

While isotropy has been the most frequent assumptiorfield direction that can induce spectral and spatial correlation
there have been extensive discussions of the structure of coanisotropy.(For a review of the extensively studied example
relation tensors for axisymmetric turbulence, both for theof anisotropic turbulence in solar wind fluctuations, see
mirror-symmetric[6,7] and non-mirror-symmetric casg8].  [18].) While axisymmetric representations may be adequate
To our knowledge, correlation structure for the full set ofin some cases, there are clear motivations to go a step further
second-order correlations, involving both velocity and mag-and investigate the most general two-point, two-field corre-
netic fields, has been given previously only for the isotropiclations for incompressible homogeneous turbulence. For ex-
case[9,10], although various special cases enter into meanample, it is not uncommon to be presented simultaneously
field dynamo theorysee, e.g.[11]). with two preferred directions, such as in the solar wind, with

Non-mirror-symmetric turbulent fields are essential ele-a mean magnetic field direction and a direct{beliocentric
ments in discussions of the role of magnetic helicity in dy-radia) associated with mean large-scale gradients. Just as
namo theory[11,12 and in the theory of magnetohydrody- important, it turns out that the most general case is structur-
namic (MHD) cascade$13] and relaxatior{14]. However, ally no more complicated than the axisymmetric cg&e8|.
most treatments of helicity have again focused on isotropic In this paper we present the full structure, using Cartesian
fluctuations, in this case allowing for index-antisymmetric coordinates, of the autocorrelation and cross-correlation ten-
contributions to the correlation tensors. The general result fosors associated with the solenoidal velocity and magnetic
the structure of the antisymmetric autocorrelation tensor, fofluctuations in homogeneous turbulence. This provides com-
arbitrary rotational symmetry, was presented in the contexplete information concerning the structure of all second-
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order momentgspatial correlation functions and correspond- TABLE I. Some basic properties of the four “primary” spectral
ing spectra for locally homogeneous and incompressibletensors. As far as the properties listed here are concerned/lthe
MHD turbulence, a model often found appropriate, for ex-tensors behave in the same fashion as the’ ‘bnes. See the text
ample, for the solar wind. Our aim is to remain clear andfor details and the appropriate formsxspace.

physically motivated, while employing reasonably rigorous

derivations. Thus we do not treat nondifferentiable fields and’"oPerty Full tensor Symmetrized components
pther pathologicall cases. We also do not attempt to ggnergl,bmogeneity ST =*S7(—k) 15 (k) ==17(~K)
ize to non-Cartesian coordinates. Along the way we find it K =TI (—K)
useful to discuss and clarify several misleading or eIToNeoUs o noidality kS =k;S: =0 ”k-l k] N 0
statements in the literatufd,8,9,13. Fortunately, these in- G lig—k]J”f—o

ivij T RV T

accurate statements have remained in abstract terms and _to
our knowledge have not adversely influenced specific dy-
namical models or interpretation of data. We intend that the )

present, more complete, discussion will be useful in future AS is well known, a general second-rank tenfomay
models and the analysis of nonsymmetric homogeneous tuflways be written as the sum of an index-symmetric part

bulence in a variety of applications. and an index-antisymmetric pad where I;;(r)=[R;;(r)
+R;i(r)]/2 andJ;; = (Ri; —R;;)/2. Note that ifv andb rep-
1. DEFINITIONS AND NOTATION resent the Usual MHD fleldS, thdﬁ;(0)=(v|bj—b|v]> |S

related to the average electromotive fofeenf), which apart

We work with the zero-mean proper and pseudovectofrom a sign difference is the ensemble-averaged MHD in-
solenoidal fields, respectively denotefx) andb(x), with  duced electric field= —(vxb). This connection is elabo-
x the (Cartesian position vector relative to some fixed ori- rated on in various sections.
gin. These quantities have obvious interpretations as the fluc- The Fourier representation of the correlation tensors is
tuating parts of the velocity and magnetic fields in an incom-also of importance. In general, we denote the Fourier trans-
pressible MHD fluid(hereb is in Alfvén speed units, for form of f(r) by f(k), e.g., v(k)=fv(r)e'*"d3/(2m)5.
which the laboratory field is scaled by the factor/4frp, However, it is customary to denote the Fourier transforms of
with p the uniform mass densityln the final section we also the R(r) by S(k), and we follow this practice. Thus, for
summarize our results in terms of correlations between thexample,lﬁ(r) and Iﬁ(k) are Fourier transforms of each
Elsasser variables™ =v=b, which are popular in solar wind other, as areR{;(r) and Sjj(k). The definitionsk= k| and
transport theory, for example.9,20. , k=k/k are also employed, and in general a caret will be used
Consider the definitions of the correlation and cross+, signify unit vectors.

correlation tensors Some of the important properties of tis, 1's, andJ’s

are summarized in Tables | and Il, where the anomalous

v = . . = . ,
Rij (N =(iXv;(x+1))=(vivj), @ behavior of the “minus” tensors is evident. Further elemen-
, tary definitions and results are contained in Appendix A.
RO()=(bib]), 2 y PP
RIP(r)=(vib]), 3 IIl. UNDERLYING THEORY AND PROPERTIES
1 A. Theory for construction of the tensors
Rij (1) = §<Uibj, ibivi’>' 4) Forms for the correlation functions can be constructed in

several different ways. One method employs the theory of

A prime denotes evaluation of the field at the displaced poisotropic tensors, developed by Robertdddj and Chan-
sition x’ =x+r and the angular brackets denote an appropridrasekhaf7,9,10. In outline their procedure is as follows.
ately defined ensemble average, usually taken to be equiva- (i) List all possible dyadic “construction elements” that
lent to long-time averagingsee, e.g.,[4]). Under the can be formed from combinations of the fundamental vectors
assumption of homogeneity such correlation tensors are ifand tensorsin the problem and the two isotropic tensors
variant with respect to a change of coordinate origin and thugj; and €;;, (€.9.,1ir;,€jj.f ). Each of these tensor forms
depend only on theelative separatiorr [21]. corresponds to a possible scalar that can be extracted from

We refer toRY, R, andR™ as the four “primary” ten-  the turbulence field by contracting the correlation tensor with
sors, withR’? used mainly as an intermediate form useful for @ pair of vectorsa,c, such asa- ¢ or a- (rxc).
obtaining the symmetrized versio®". Unless otherwise (if) Associate a multiplicative function with each con-
stated, the absence ofva b, +, or — superscript indicates struction element, representing information specific to the
that the equation applies equally well to all four primary turbulence ensemble. Thesealar generating functionde-
forms. A subscript or superscript/b indicates the relation Pend only on the invariant scalars formed from contractions
app"es to both the andb autocorrelation tensors and is not of the fundamental vectors of the prObIem with the available
to be confused with the superscripb of Eq. (3) for ex- ~ isotropic tensors, for exampleA(r?,r,), wherer?=r-r,
ample. Also, both the indexed and unindexed forms will ber,=r-B,, andB, is some preferred direction.
used to denote the same tensor, Rg={R;;|i,j=1,2,3 de- (iii) Form the sum of all such terms.
notes the full tensor. The summation convention on repeated (iv) Impose appropriate constraints on the resulting form
indices is in effect unless otherwise stated. (e.g., solenoidality and homogengity
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TABLE II. Additional properties of the index-symmetri¢)(and antisymmetricJ) components of the
“primary” spectral tensors. Note the anomalous behavior of the minus tensotspace, columns 2, 4, and
5 still apply, but all quantities are of course purely real.

Tensor Real or Index k Hermitian
Tensor character imaginary symmetry parity nature
1°(k),1°(k) true Re symmetric even Hermitian
(k) pseudo Re symmetric even Hermitian
17 (k) pseudo Im symmetric odd anti-Hermitian
J°(k),J°(k) true Im antisymmetric odd Hermitian
J* (k) pseudo Im antisymmetric odd Hermitian
J (k) pseudo Re antisymmetric even anti-Hermitian

The final step yields relationships among the varioudion that the measured scalar correlations are invariant under
terms in the general expression and allows the minimumhe extendedproper and impropeérmotation group, Robert-
number of scalar generating functions to be determined. Onson argues that “such a scalar invariant under this extended
then arrives at the minimal specification of the most generagroup can be expressed in terms of scalars of tipalone,
correlation tensor allowed by the set of_as;umed symmetriesor those of type(2) suffer a change of sign under reflexion

In Sec. IV we shall proceed via a distinct route, wherein . On this basis he in effect choos€s=0 and arrives at
theT solenoidal constraint is built in at an egrly stage, versughe correct[type (1)] form for mirror-symmetric isotropic
belng enforced as a final Step. This reorderlng of the Standar@brreiations_ However, upon Considering the non-mirror-
approach is more convenient when preferred directions areymmetric case more carefully, one sees that Robertson’s

permitted, i.e., for any symmetry more complex than isot-reasoning is imprecise, however correct his conclusions may
ropy. For the case of axisymmetric turbulence, Chantave been.

drasekhaf7] introduced a related method for enforcement of  The deficiency in this reasoning is seen even in the sim-
the solenoidal condition, based on taking the curl of approplest case of isotropic helical turbulence, in which the index-
priate potential correlations to arrive at the velocity correla-antisymmetric type (2) correlation takes the form
tion tensor. €j 0P (r)/or, [13,23, where one can show that the helicity
Two approaches to identifying the generating functionsgenerating function satisfie§2®(0)=—(u- w)/2. The
will be presented below. The first makes use of the VeCtOEiuantityu. w is a pseudoscaiar, reversing Sign under inver-
potentials forv and b and avoids using any arbitrary pre- sjon, and therefore it is clear thdt is also a pseudoscalar.
ferred directiofs). By expressing the spectral tensor as theCOnsequenﬂy the above-mentioned typ€) index-
correlation between the curls of these potentials, we are ablgntisymmetric form doesiot reverse sign under inversion
to examine the number and type of scalar degrees of freedoghd scalars derived from fe.g.,a-cx V) are proper sca-
appearing in the most general second-rank correlation tenars and not pseudoscalars. In Robertson’s notation, this case
sors involvingv andb. We conclude, in accordance with the ¢orresponds to inclusion of a typ@) contribution of the
argument of Orszafp2], that four such scalars exist in gen- form ¢;,,r,; this second-rank pseudotensor is multiplied by
eral. This procedure justifies the subsequent use of g pseudoscala€. The product does not reverse sign under
k-dependent coordinate system, involving an arbitrary referinyersions, even though nonmirror reflection invariant corre-
ence direction and scalar potentidie., the poloidal and |ations associated with the helicity- w) are present.
toroidal potentials; see Appendix)Bto economically de- This conclusion is beyond the scope of Robertson’s con-
velop explicit representations of the basic tensor forms. Aliderations because he assumed no helical correlations. For
though the latter is conceptually less elegant, it nonethelesge index-symmetric autocorrelation tensors he considers,
proves to be a powerful approach. Before considering eitheRohertson’s argument leads to no errors. However, his rea-
of these methods, however, we discuss the importance %foning does not carry over to the case of typecontribu-
pseudoscalar and pseudotensor contributions to the correlgons, in which both pseudotensor forms and pseudoscalar

tion tensors. generating functions can appear.
Several other errors related to this point exist in the litera-
B. Scalars vs pseudoscalars ture, especially with regard to the index-antisymmetric he-
In Robertson’s seminal discussion of second-rimaitro-  liCitylike correlations. In connection with isotropic but non-

pic autocorrelation tensofd], contributions are divided ac- Mirror symmetric MHD  correlations, Chandrasekhid]
cording to whether their associated scalars, obtained aft&oncluded incorrectlyin his Eq.(18)] that the(v;vj) and
contraction with arbitrary vectora and c, are of type(1)  (bibj) are necessarily index symmetric and that the cross
(inner products likea-c) or type (2) [triple products like —correlation{v;bj) is purely index antisymmetric and of the
a-(rxc)]. If A,B,C are scalar functions of the separation form Ce;;,r,. The former statement is too restrictive and
distancdr|, tensor forms associated with tyf® scalars are disallows helical correlation, while the second is clearly in-
Arirj and B6;j, while the isotropic form connected with correct, as can be seen by the fact thg|) and(v;b;)
type (2) scalars isCe;j .f . In order to impose thassump- must be structurally similar as the cross helicityb be-
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comes large. In fact, under Chandrasekhar's assertiofipund for the isotropic case, we havéu- w)=
(vib/)=0 and the so-called Alfwic fluctuations that are —2V2®(0)=—4b; . Itis not difficult to go further and de-
observed in the solar wingee, e.g.[24]) would beimpos-  rive an explicit form for the matrix
sible Both of Chandrasekhar's oversights are corrected by
including appropriate pseudoscalar functions and associated ___E _ _

' blj_ <vaV]v[3>€Iaﬂi (5)
tensor or pseudotensor forms. For examgleb;) should 4
include a symmetric part and ;v ]’ )} an antisymmetric part,

as will be discussed in detail below. _ which can be verified by direct construction. Similarly, one
The paper by Matthaeus and Sm{8i] also contains an an, find explicit forms for higher-order coefficients, such as
error. They stated that “any homogeneous correlation matrix

R of the formR;;(r)=(b;(x)b;(x+r)) consists of the sum

of a symmetric proper tensor and an antisymmetric pseudo- -
tensor, independent of the vector or pseudovector nature of m= 2% 41
b,” which they refer to as Theorem A. We can now see that

this theorem is incorrect. : - L
A correct statement that replaces the Matthaeus-Smith a&\_lote.that all of the matrix coefficients appearing in th? ex
pansion of® can be assumed to be symmetric under inter-

sertion(without invalidating their main conclusionand also N tan ir of indi Th neralization to remain
serves to clarify the situations discussed by Robertson an?jha ge ot any pair o ces. 1he generalization to remain-
Chandrasekhar is the following ing orders is clear. Each case involves afg; and an odd
Theorem AAR® andR® are proper(true) tensors, while number of derivatives acting on the second argument of the
R® are pseudétensors ' correlation tensor, which is to be evaluated at zero separation
To prove the theore.m foR® we proceed as follows and contracted appropriately. Each of these coefficients is
(i) Choose a particular coordinate system basis and deﬁr{ganlfestly a pseudoscalar derived from one-point cor_re_la-
RY(r) with respect to it, using Eq2). ions. If_ all such. pseudoscalars vanish, S0 WI|! the hellt_:lty
(il) Make an orthogonal change of basis via the tr‘,cmsfor_generatmg functionb, along with the entire antisymmetric

X . - . part of the correlation tensor.
m m = +
ation matrixM, where deti)= 1. Ln the new coordinate In light of this example and theorem AA, a refinement of
system we have, for examplex=Mx,v=Mv, and

. _ S _ Robertson’s statement is as follows. An autocorrelation ten-
b= det(M)Mb and the correlation function is defined by sor is a proper tensor. Typd) tensor forms appear multi-

(VaViViViu ) €igp- (6)

R 4(1) =(b,(X) D 5(X+T)). plied by proper scalar functions. Tyg&) forms are multi-
(i) It is then straightforward to show that plied by pseudoscalars. In the latter case the presence of a
ﬁ23(7)= MMy, R-bj(Mr) and thusR® is a true tensor. nonzero pseudoscalar function is connected with the nonva-

nishing of at least some of the natural pseudoscalars that can

tive elements of a given correlation tensor have the samfe formed from one-point correlations of the basu; fields.
overall true or pseudo nature. While such proofs may seem Note that each one-pc_nnt .pse_udoscalar correlation appear-
ng in the above expansion is directly relatedéme of the

obvious, apparently they have not been published previousg . -

in the context of MHD turbulence theory. These results hav e(rjlerhallzed helicitiese.g., <¢'V>'<V'|‘.">k'<‘"'vx 3’>’ etc)

important consequences for correlation tensors. For exampl@d these are interpretaje6,27] as linkages and twists of
the appropriate field. Statements analogous to the above hold

for the v/b tensors each additive componentPfcan only q lation involvi d
be either a true tensor multiplied by a true scalar function off & Pseudotensor cross correlation involving a vector and a
pseudovector quantity.

a pseudotensor multiplied by a pseudoscalar function.

In some of the earlier literature it was erroneously as-
s_um_ed(tacitly in some casegdhat the scalar functions mul- IV. EXPLICIT TENSOR EORMS: VECTOR POTENTIALS
tiplying the “bare” tensor forms must always be proper sca-
lars. Above we argued thal(r) is a pseudoscalar because Since bothv and b are solenoidal, it is convenient to
when evaluated at the origin it is a one-point pseudoscalantroduce potentialsl and A such that
correlation. Indeed, it is instructive to demonstrate that the
antisymmetric tensor that appears in several of the autocor-
relation and cross-correlation tensors described below is al-
ways connected with nonzero values of various one-point
pseudoscalar correlations. where the vector potentials are only unique up to the addition

To be definite consider the antisymmetric part of the au-of the gradient of an arbitrary function of positidqgauge
tocorrelation (viv]-'>, which can always be written as freedon). In Fourier space these relations become
€j 0P (r)/ar, [15,25, which applies to all homogeneous v(k)=ikX (k) and b(k)=ikxA(k). It follows that
velocity fluctuations and generalizes the isotropic form menw(x)=V Xv(x)=—V2¢+VV-¢ and e(k)=ikxv(k)
tioned above. The antisymmetric part of the correlation ten=k?y—k(k- #), with similar relationships holding for
sor must be an odd function ofand thusd is even. Assum- j=V Xb. Whenv andb are the usual MHD fieldsy is the
ing well-behaved correlation functions, we can express theelocity stream functionew the vorticity, andj the electric
generating function as a power seriesP(r) current density(in appropriate units
=a-+byrir;+cijmrirjfrm+- - -. Matthaeus and Smitfi5] Making the appropriate substitutions in the Fourier trans-
showed tha{v- ¢»)=2a, wherev=VX 4. Similarly, as was form of Eqg.(3) we obtain

The proofs forR’ andR* are analogous. Hence all addi-

V(X)=VX(x), b(x)=VXA(X), (7
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S,’J-b(k)=<vi*bj) ing ¢ to be “hidden” in the diagonal terms. However, in
general the diagonalization cannot be performed simulta-
neously for allk, so thatc remains as a degree of freedom.

(" -A)+(k- " {Ak;— 5;k-A}) Note that the turbulence is isotropic if and only if, for all
k, c=0 andd,;=d,. Similarly, whenh#0 a unitary trans-

+<¢f{kik'A—k2Ai}>- (8  formation can eliminate the degrees of freedom associated
with bothh andc, for a givenk. In general, such a procedure

Specializing to the Coulomb gauge for baghand A, i.e.,  does not eliminate degrees of freedonSisinceh andc are

k-¥=0=k-A, yields functions ofk and hence a distinct unitary transformation is

required for eactk mode.

=K2

kik;
M

kik;
vO 1y = k2| 5. — L (a* . AY— K2 A
) (k)=k 5” k2 <'p A> k <l’//1 A'>' © V. EXPLICIT TENSOR FORMS: SCALAR POTENTIALS
The forms for the autocorrelations of and b follow by A. Real space potentials
letting A— ¢ and ¢»— A, respectively. Having shown that four scalar functions are necessary to
Continuing to work in the Coulomb gauge, we may form specify each of the correlation functiok)—(4), we derive
the “=" tensors[cf. Eq. (4)] explicit forms for the correlation tensors. This is facilitated
. ) ) by employing representations based on an arbitrary reference
S (K)=S;"=(S§)* direction.
K As reviewed in Appendix B, a solenoidal vector field can
—12l 5.~ D00 — 2/ Ak always be decomposed into poloidal and toroidal contribu-
K i k2 10’[’ ATH.C)FKAgAT =H.C), tions. We use th&-space forms
(10 v=—VX(eXVP,)—exVT,, (12
where H.c. indicates the Hermitian conjugzﬁtfansposepf b=—VX(eXVP,)—exVT,, (13)
the complex conjugaje Alternative representations &~
can be formed using relations sucha@s-k*y. where theP’s are the poloidal potentials and thgs the

While this approach can be useful, it does not straightfortoroidal ones. For convenience we refer to the scalar func-
wardly lend itself to extracting explicit forms for the scalar tions P and T as the poloidal and toroidal potentials of the
generating functions. However, EqS) and(10) can be used vector field, although strictly speaking these terms apply
to prove, in a coordinate system independent way, that fopnly to the associated vector components of the field. Since
eachS (or R) there are precisely four independent scalary s a true vectorP, must be a true scalar afig a pseudo-
generating functiongOrszad 22] has given a distinct, essen- scalar; similarly,P,, is a pseudoscalar arf}, a true scalar.
tially geometric, prooft The proof follows. This information will be of use for an alternative proof of

Consider, as an examplg} (k). Equation(10) shows that  theorem AA.
the independent elements 8f are completely determined  Note thate is an arbitrary reference direction that has no
by those of the tensdil;; = (A’ + ¢ Aj). This is clearly a intrinsic connection with possible preferred directions exist-
Hermitian matrix and so is fully determined by at most nineing in the turbulencede.g., a rotation axis or uniform mag-
independent real numbers. However, some of the degrees faétic field. Nonetheless, in some circumstances it is useful
freedom inll are associated with gauge freedoms that do noto considere to coincide with such a preferred directi¢ef.
influence the correlation tensor. Choosing the Coulomlsec. VII).
gauge for both¢s and A, for example, implies that  We begin withR}(r). From Eq.(12) it follows that(since
kiIL;;=1I;;k;=0 and further constrains the number of inde- no confusion should result, we temporarily drop theub-

pendent elements. In this gaudé,can be written scripts onP, andT,)
d; c+ih 0 __PP(X) FPP(X) aT(x) 14
c—ih d, 0], (11) vi(x) =8 IX, 0%, e axax, ClaSa axg (14
0 0 0 ) )
_ d P(x+r)i d“P(X+r)
where the nonzero 22 subspace is orthogonal to and vi(X+r)=—¢g Ir ,ar, " Cu arjor ,
d,, d,, ¢, andh are real. Thus* (k) has four independent
scalar elements. Montgomery and Turh28] considered a e e IT(X+r) (15)
similar decomposition without reference to the potentials; Iwv=e e,

see als29]. The same argument can be appliedS¢°,

which is also Hermitian, and an analogous argument used fokfter multiplying these together and ensemble averaging we

the anti-HermitianS™ (k). It is noteworthy that the above obtain an intermediate form fdrj; that involves the func-

argument proceeds without choosing a coordinate sy&em tions A(r)=(PP’), B=(TT'), C;=(PT'), and Cy(r)

an arbitrary reference directipifor S. =(P'T)=C4(—r). For simplicity we suppress the sub-
Whenh is zero(clearly connected to the absence of he-scripts that should be attached to these functions and their

licity), Eq.(11) can be diagonalized by a real rotation, allow- descendants. To collect terms of like symmetry let
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2D=C;+C, and Z=C;—C,. Homogeneity requires that sen to be independent of rotations about that axis. This cor-
A, B, andD are even under the coordinate inversies —r, respondence is discussed further in Sec. VII, along with
while C is odd. We then eventually obtain other special cases. For isotropic turbulence, however, there
. ) ) 5 - can be no dependence on any particular direction and thus no
Rij(N=[dj(e-V)"=(ed;+ ;) (e- V)V +eeVVIA dependence oa. Therefore, we must have,=C,=0, and

—{5”-[V2—(e- V)2]+t9i2j —(ed;+ej3)(e-V) the well-known result is recovered E, andH, are func-

tions of|r|.
+ eiejVZ}B+ [(ei Ej,uv+ e]' Eiﬂy)eﬂﬁvvz—(em,ﬂj

2 2
+ €001)€,9,(8: V) JC— €} ,0,[ V=~ (e- V)7]D, B. Fourier space potentials

(16) To complement the derivation of thespace forms of the

whered? = d?/ardr;, etc. Clearly, only the terms involving v,b tensors, we now outline the derivation of tkespace
M Lo . . Co forms for the* tensors. As discussed in Appendix B, it is
D are index antisymmetric, while the others are strictly index

svmmetric. It is convenient to absorb factors li&eV into convenient to choose the two scalar potentials to have the
tﬁ/e scalar .functions Thus let same dimensions. Using thespace forms of Eqg12) and

’ (13), with the extra factors of k/inserted, we obtain

V2F= B+V?A, P* (K)
v (k) =[k?¢,—e-kk;] Uk +i(exk);T¥(k), (18

V2E=—[V2— (e V)?]B,

H=—-[V?—(e-V)?]D.
etc. The Fourier transform of EQ.(3) s S’jb
The evenness o, B, and D under coordinate inversion, =(v;(—k)bj(k)). Substituting Eq. (18) and the
implies thatE, F, andH are also even functions of It can  analogous form for bj(k) into this and defining
also be shown thate(V)?A+B=(e V)?F—E, provided A;(k) =(P,(—k)Py(k))=(P*Py), By(k)=(T*Ty), C5(K)
that all the generating functions have vanishing spatial mear:- (P*T,), C,(k) =(T¥P,), andC3=D,,+C,p, C4=D,p
value. This relation is useful in determining the final form —Cup E,p=[k*—(e-k)?]B;, F,,=B;—A;, H,,=k[1

_ . o 2 . . .
Ri’j(r)=[5ijV2—&izj]Ev—[(eiﬂpLejz?i)(e- V)V2+eie,-V2V2 (e-k)“]D,p,, and using the Chandrasekhar identifie 80|

we find
+ 07 (€ V)2IF, + (81 €) vt Sjakipn)€ud [ €,V
- aa(e' V)]Cv+ e_ijaaaHv ' (17) k|k
, _ SP(K)=| 8~ | Euot| [eikj+ejki](e-k) —ejejk?
where we have reinstated thesubscripts of the scalar func- k
tions.
Thus, for incompressible homogeneous turbulence the _kikj 2l

index-symmetric part of the velocity correlation tensor can K2 (&K)* I Fub=100i.€1apT 0jp€iap]

be generated frorthree independent scalar functions, while

the index-antisymmetric part depends osilagle such func- X ekg(e,k?—k, e K)CyptiejKHyp.  (19)

tion H, . As mentioned above, this fourfold generation of the

correlation tensors will be shown to apply for both the auto-

correlation and the cross-correlation tensors considered herAs was the case for the velocity and magnetic field auto-

The parity of the scalar functions has also been explicitlycorrelation tensors, thg, F, andC terms are index symmet-

obtained:E,, F,, andH, are even, wherea€, is odd. ric and theH term is antisymmetric. The part with indices

Clearly, an exactly analogous derivation, and thus final formassociated  with C,, can also be  written

holds for Ribj , the true or pseudovector nature of the under{ kX (exk)];(exk);+[kXx(exk)];(exk);, showing that

lying field being immaterial for an autocorrelation. The spec-C,, does not contribute to the trace. Lettify— P, and

tral tensors are easily obtained via application of the Fouriefl,— T, recovers the result for the velocity autocorrelation;

transform. however, the result is not equal to the Fourier transform of
Note that the result isindependentof the true or EQq.(16) because we are working withspace potentials that

pseudovector nature @& since components af only appear are dimensionally equal. Additionally, various factors-ot

in product pairs. This will be of importance when we con- are present, e.g= k?E,p(K) — E,p(r).

sider homogeneous turbulence with an externally enforced Note that when the turbulence is isotropic equal amounts

preferred direction, such as that due to a uniform magnetiof energy must be associated with the poloidal and toroidal

field (see Sec. VII (. components since no real distinction between them then ex-
Equation(17) is structurally equivalent to the result given ists. This requires thah;=B4, and thusF,,=0, providing

as Eqg.(18) in Ref.[8]. This reveals dormal coincidence of additional proof that th& scalar functions vanish for isotro-

the general correlation tensors with those efxisymmetric  pic turbulence.

homogeneous turbulencedfis specialized to be an axis of We now have everything we need to form the spectral

symmetry and the scalars, in general functions,are cho- versions of thex tensors. Referring to Eq19) we obtain
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S| (K)=SP=(S)* F*=(T*T,—P*Py)*cC.C., (24)
k. k. F_/p*T. _T* —
= 5”_# Ei+ [eikj+ejki](e' k)_eiejkz 2C <Pv Tb Tv Pb>+C.C., (25)
2H* =[(P*Ty+ T*Ppy+c.c][1—(e-k)?k, (26)
kik; .
- ?(e- K)?|F* =i 0i€japt Sjuciaplckp(€k®  where c.c. denotes the complex conjugate. It follows imme-

diately that the four plus functions are all purely real scalar
—k,e k) CT+iejk,H", (200 functions, while the minus forms are pure imaginary. Refer-
ring to Eq.(20), it can now be seen that the symmetric parts
where E*(K) =E, (k) £E,p(—k), etc., with the+ (—) of S(S7) are all purely realimaginary, with the reverse
form being exp||c|t|y even(odq) in k. An inverse Fourier applylng for the antisymmetric pieces. This result is obtained
transform yields the correlation tensors. Note thattheen-  independently in Appendix Asee Table .
sor involvesC ™, notC*, and vice versa. By letting the b subscript on the poloidal and toroidal
So again the representation is one where three scalar funfinctions become a and ignoring the c.c. terms, we recover
tions are required for the symmetric terms and one for thdéhe scalar generating functions f8&F. In this caseg, ,F,,
antisymmetric portion. FoB", these scalar functions have andH, are pure real, where&, is pure imaginary. ldentical
the same parity as their autocorrelation cousins, i.e.fesults hold fors®. As expected, these results are also in
E*,F* H™' are even an€C~ odd undekk— —k. The minus agreement with those summarized in Table Il. Moreover, this
tensor, however, exhibits precisely complementary behavioanalysis reveals thd, is essentially the autocorrelation of
with E~,F~,H™ being odd andC" even. Thus, aside from the toroidal potentia{T;‘ T,) andF, the difference between
the true or pseudo nature of the tenstse Table ), 37 is the toroidal and poloidal autocorrelations. Similarly, the real
formally equivalent toS; and Sf} , and similarly for their —and imaginary parts_of the poloidal-toroidal cross correlation
Fourier transforms. The equivalence means that many mattP; T,) are, respectivelyd, andC, .
ematical results that hold for any one of the three also hold As noted at the start of this section, the true vector nature
for the other two. We subsequently refer to these tensors ar@f vV requires that its poloidal and toroidal scalar functions
their component scalar functions as “normal,” while the mi- are, respectively, true and pseudoscalars.iFtire situation
nus tensor and its associated scalar functions are referred i®obviously reversed. It is then straightforward to show that
as “anomalous.” E* andF* are pseudoscalars, whi@* andH* are true
scalars, with the reverse holding for th&b forms. Table I
summarizes many properties of the generating scalar func-
tions, along with some related ones for the multiplying parts
Having derived the most general form of the four primarywith indices. The results are clearly in accord with theorem

correlation tensors, we now establish some consequencesA and this explicit construct represents, in effect, an alter-
Where the results iR andk space are essentially equivalent, native proof.

we usually state only one form.
Consider the trace. Clearly only the index-symmetric VI. PHYSICAL INTERPRETATIONS

parts contribute to this quantity and in fact only theand OF THE SCALAR GENERATING FUNCTIONS
F functions are relevant:

C. Further mathematical consequences

In this sectiorv andb represent the fluctuating portions of
Swa(K)=2E(K) +[ (e k)2=K3]F (k). (21)  the velocity and magnetic fielin Alfvén speed unitsof a
homogeneous turbulent incompressible magnetofluid. The
For isotropic turbulence, this reduces further ®&(X|). In physical content of the various tensors is then of interest and
x space, Eq(21) takes the forni31] here we examine such information.
Consider first thev and b tensors. The antisymmetric
Rao(r)=2V2E(r)+[V?—(e-V)2]V?F(r). (220  components are of the form

Now, for each of the “primary” tensors, its trace is either a IP(K) =i ) Ko H (), 27

seudoscalar or a scalar. For exam r)y={v-v') is i i
P Bz (1) = ) so that, as is well knowp8,15,23, H corresponds to twice

clearly a true scalar, whered; (r)=(v-b'=b-v') are - T .
both pseudoscalars. It follows, by the quotient rule for ten_the helicity spectrum of the defining field. Integrating over

sors[32], thatE,;, andF,,, must be true scalars aid™ and all k we obtain, for example,

F* pseudoscalars, in accord with theorem AA. Note that the

true or pseudoscalar character of the generating functions is Hv(r=0)=<¢r-v>=f H,(k)d%k, (28
unrelated to their even or oddness undes—r (see below.

Writing the scalar functions in terms of the poloidal and hich is twice the bulk helicity of the velocity field. A simi-
toroidal functions is also revealing. Referring back to theja; regyit holds for the magnetic field fluctuations. Note that
k-space derivation of th&~ tensors, we have becauseH,;, is an even function ofk, the integral of

) A Ji/°(k) over allk is identically zero. Inx space this result
T=[(TiTy)xc.cl[1—(e-k)*]K?, (23 takes the formd%/°(r=0)=0. Recalling the definitions, it is
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TABLE lll. Summary of the properties of the generating scalar functions and their multiplying “parts
with indices,” for each of the “primary” tensors. “R” and “1” indicate the real or imaginary nature of the
term, “E” and “O” its even or odd nature undek— —k, and “T” and “P” its true or pseudotensor
character. The final column is the net result for the entire term. Se€B).for example, and the text.

Scalar Part with Index Net
Term function indices symmetry character
E,n RET RET symmetric RET
Fom RET RET symmetric RET
Cuip IOP IOP symmetric RET
H,b REP IOP antisymmetric 10T
E" (E7) REP (IOP) RET symmetric RERIOP)
F™(F) REP (IOP) RET symmetric RERIOP)
Cc (ChH IOT (RET) IOP symmetric RERIOP)
H" (H7) RET (I0T) IOP antisymmetric IORREP

clear that this must be the case since mﬁjé) are manifestly  \hich theZ direction is aligned wittk. There are many such
symmetric ar =0. Physically, the magnetic helicity consists coordinate systems, distinguished by rotations aboutkthe
of two distinct contributions(i) the topological linkage and  4yis I the plane is spanned by axes aligned veithk and

Elll)Z ztgezzt"\g.St .|0f rtnettgnetict field blines((()jr ;‘quthtube? i kX (exk), for arbitrary reference directiore, then the
290,24, Similar statements can be made for the veloct ychange from onek-aligned system to another is accom-

helicity H,, . . . ! . .

Wl?z/at z;bout the three scalar functions associated with th I|shed by selection Of. a par‘ucula As explalped In Sec.
symmetric parts 08"/°(k)? Suppose the turbulence is iso- V7 !N this frame contributions to the correlation tensor by
tropic, so that excitations at wave \(ectdf take the simple form g)gpressed

' in Eq. (11). Contributions to the real-space quantities by ex-
K K. citations at k can be written as(the real part of
S,’j’b(k):(éij—'—zj> Eun(|K]) +1 € akoH (K. bi(x) = (By.,B,)e’*? where the two component complex-
k valued vector B, ,By) lies in the plane perpendicular ta
29 This is a familiar one-dimensional “slab” geometry; every
Fourier contribution looks like a slab fluctuation in its special
coordinate frame. Considering the hodographic projection of
b, (x) onto this plane, we see that in general the tip of the
‘field vector traces an ellipse. There will be a preferred coor-
dinate system in th&-y plane that selects the principle axes
of this ellipse. For the right choice & there are no index-
symmetric off-diagonal terms needed to describe the corre-
clearly less familiar than those associated with energy Olatlon. Ever;ghg% atbhout the cor(rjela_Uons F:jr.(.)dlﬁﬁd |r|1|'th|s
nelciy. However, st s we were able lo s ec. (%% TS0 By e malr o iner ot of e epse
[l B) that the generating function associated with an anti- h | gb - th .yE h fic he-
symmetric autocorrelation tensor is associated with specifi ase lag between these COT“F"?”Q" » the magnetic he
éCIty). Thus, for thisk, contributions toC cannot appear

nonvanishing one-point pseudoscalar correlations, here ecause all the information is accounted for, using three
can provide examples of correlations associated with nonvz;2 ' g thi
numbers. However, unless all wave vectors have polariza-

nishingC, or Cy . For example, tions that align in a single Cartesian frarf@ehighly unlikely

ThusE,;(|Kk|) is equal to 4rk? times the omnidirectional
energy spectrunisee, e.g.[4]) and the scalar functions
F, andC,,, are associated with departures from isotropy
An examination of the tracé€1) indicates that for noniso-
tropic turbulenceF,,, contributes to the energy spectrum,
but C,,, does not.

The physical correlations implied b, and C, are

2[V2—(e-V)?1?C,n(r) =g €149l Rij (N +Rji(1)] circumstancg we cannot eliminate all contributions @ in
this way. A physical interpretation d, therefore, is that it
=(ev(X)[o(x+r)—w(x—Tr)]-€).  represents information about the orientation of elliptical po-

(30) larizations for the various wave vectors. In isotropic turbu-
lence, for evenk the ellipses become circléeegardless of
Clearly this correlation is a pseudoscalar and when nonzerthe helicity) and every choice o diagonalizes the symmet-
implies a nonvanishin@,,,(r). In addition, we know{cf.  ric part of the correlations, s6=0.

Sec. V C, Eq(25), and Table Il] thatC is associated with a It is interesting to note that the helicity can also be elimi-
nonzero imaginary part of the cross correlation between theated locally ink space in a similar way by choosing a
toroidal and poloidal potentials. complex(polarizatior) coordinate system to describe they

It is useful to elaborate upon the discussion at the end oplane perpendicular th. In this special frame the phase lag
Sec. IV to reveal the physical nature of tRetype correla-  betweenB, andB, in the local slab system is absorbed and
tions. Consider a fixed wave vectorand its associated Fou- only two independent numbers remdiight and left circu-
rier amplitude for one of the turbulent fields, shylLet us larly polarized energigsapart from an unimportant overall
return, for the moment, to a Cartesian coordinate system iphase. Once again, however, the polarization basis
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set will usually be different for various wave vectors. In
general, then, four independent scalars are required.

Consider next the plus tensor. From the definitions of(see, e.g.,[11]),

Rfj’ and the cross helicit ., it follows that[33]
2H =R, (r=0)= f 1K) A3k, (3D

so thatl [ (k) =2E"(k)+[(e-k)>—k2]F " (k) is twice the
cross helicity spectrum. The cross helicity is also interpret
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field is associated with the anisotropy of the turbulence. This
result is likely to be of interest in mean-field dynamo theory
particularly in connection with the
a-dynamo closure.

Although (vXxb) vanishes for isotropic turbulence, the
mean value of the squa#&,,.=((vx b)?) is in general non-
zero. We can evaluat€,,, under these conditions, with the
additional assumptions thép all components; andb; are
Gaussian random variables an@) unless i=j, then

{vib;)=0, (vjv;)=0, and(b;jb;)=0. It can then be shown

able as a linkagé¢26]. Specifically, it is a measure of that pat
between vorticity tubes and magnetic flux tubes. Another

interpretation of the cross helicity is that it is proportional to
the (average correlation betweew andb. Hence it is con-
venient to introduce the normalized cross helicity

&= [0D(0%) (V- D)2l 3

— tot H H H
0c=2H./E®, which is bounded by-1 and also expressible e s value is thus prescribed, not just bounded, once the
in terms of elements of the primary tensors. The eXtrem%nergies and the cross helicity are given. Cleafly, is

values correspond te=*+b and are associated with exact
cancellation of the nonlinear terms in tli@compressible
MHD equations of motion. This type of Alfwec fluctuation

is frequently observed in the solar wind plasiisee, e.g.,
[24]).

By direct analogy with they andb tensors, we refer to
H* (k) as(twice) the spectrum of the “helicity of the cross
helicity” since it has the same mathematical relation to
H.(k) as doesH,(k) to E™(k) [20]. However, this helicity

maximal when the cross helicity is zero. Note, however, that

in fully developed homogeneous turbulence the components
of v andb are unlikely to be distributed as Gaussian random

variables.

Taking into account the anomalous nature of the minus
tensor, Zhou and Matthaey®20] have suggested that its
symmetric parts contain the “helicity of the electric field.”

In particular they refer to the trace of the minus tensor

of the cross helicity is somewhat different in nature than the g () = 9; Im(v* - by =2E~ (k) — [ (e-k)2—k?]F (k)

velocity and magnetic helicities. It is still an even function of
k, as isH,=2H,,, for example, so that in general there is a

(39

bulk value as well as a spectrum, but it is a true scalar rathqu this name. The integra| of this quantity over all wave

than a pseudoscalar.

Finally, we turn to the physical content of the minus ten-
sor. From the definitiori4) it follows that

Rﬁ(r=0)=<vibj—bivj), (32)

which is related to the ensemble-averaged induced electr
field (emf) of the fluctuations€= —(vXb)=—-Vd. The
function ®(r)=H"(r) is the electric potential. In fact, it is
not hard to show that the electric field is contained only in
the antisymmetric components

P

—e
U or, .

‘Ji}(rzo):_eijaga (33)

=0

Consequently, irk space®(k)=H" (k) is interpretable as
the spectrum of the electric potential. As will be shown in

vectors is identically zero. Ix space this is the obvious
statemenR_,,(0)=(v-b—b-v)=0, so that despite having a
nonzero spectrum, the helicity of the electric field always has
a bulk value of zero. As shown in Sec. VII, for isotropic
turbulence the traced spectrui®b) is also zero, a property

ithat may be tested for when analyzing observational or ex-
Berimental data.

To summarize, for incompressible homogeneous turbu-
lence, witharbitrary rotational symmetry, each of the fol-
lowing quantities, or equivalently its spectrum, is generated
by asinglescalar function: velocity helicity, magnetic helic-
ity, helicity of the cross helicity, and the induced electric
field. In each case, the quantity is associated with the anti-
symmetric portion of its correlation function or spectral ten-
sor. Recall also that the magnetic helicity is a rugged invari-
ant of ideal magnetohydrodynamics. The symmetric pieces
of thev/b spectral tensors hold the associated energy spec-

Sec. VIII, this result enables information on the spectral antra, their(traced sum forming the spectra of another rugged
isotropy of the electric field to be obtained from the reducednvariant(total energy. The third rugged invariant, cross he-

spectra ofJj; (k).

licity, is contained in the trace of the- tensor. Unfortu-

When the turbulence is isotropic, but not necessarily mirnately, the quantities associated with the symmetric parts of

ror symmetric(see also Sec. V)] the induced electric field
vanishes. Mathematically this follows sindé™ (k) must
then be a function ok?, but is also explicitly odd and the
only function that satisfies both these conditions is
H™ (k) =0. This behavior is opposite to that of the helicities
of thev/b tensorsH,,, which must vanish for completely

the — tensor, while undoubtedly physical in character, are
currently less well understood.

VIl. SPECIAL CASES

We now present some specializations of the above results

mirror-symmetric turbulence, but do not necessarily vanistor particular symmetries of the turbulence. It will be most
for isotropic geometries. They are even pseudoscalar funaonvenient to do so using tlkespace forms of Sec. V and in

tions, wherea#d ™ is an odd true scalar function. It follows
that the presence of an inducéshsemble-averaggelectric

particular the tensor form given by E¢R0). We will drop
the = labels, however, noting that the results hold for all
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four of the “primary” spectral tensors, unless we explicitly under arbitrary rotations of these fields about the fixed axis.
indicate otherwise. Be aware that the parity of the scalafhe general results of Sec. V require only slight modifica-
functions may differ from tensor to tens¢see Table .  tions for such flows. It is convenient to restrietto be the
We begin each subsection with a precise definition of theaxis of symmetry, with the scalar generating functions then
symmetry. depending only upon the variables,i(-€) or equivalently
[(rxe)2r-e]. The parts with indices are independent of the
true or pseudovector nature ef(components ok always
Turbulence is isotropic if all averaged quantities dependappear in product pairsso the overall structure is the same
ing onv andb are invariant under arbitrafpropey rotations  whether the preferred direction is associated with a mean
of the v and b fields about arbitrary axes. Consequently,flow, a uniform magnetic field, or a rotation axis, for ex-
there can be no dependence on any preferred diréstigdl  ample. However, the transformation propertieeafo place
terms in Eq.(20) involving e must therefore vanish, that is, restrictions on the functions appearing in the tensors in order
F=C=0, leading to the well-known result, which may be that the required parity under inversion be maintained. Bear-
read off with ease from Eq(20), e.g.,[4]. Isotropy also  jng these conditions in mind, the present results easily re-
requires that the scalar functions depend only on the WaV€jice, in the special case of axisymmetry, to the form pre-
vector magnitudek=|k|. However, the minus scalar func- ggnteq by Matthaeus and Smifl8]. The axisymmetric
tions andC,,, are explicitly odd irk and hence must also be ¢qrelation tensor presented by Mofffte] is formally cor-
identically zero in this case. It follows that the full spec-  rect, put includes too many independent scalars. Presumably
tral tensor and its real space counterpartis is due to an incomplete use of the solenoidal constraint.
Ri](r):%@ibj’—bivj’) are identically zero for isotropic tur- In particular the antisymmetric autocorrelation is described
bulence since each of its scalar functions vanishes. Thus onBs containing three scalar functions, whereas only one is re-
six independent scalar functions are needed to specify isotrquuired [8,15] (Moffatt and Proctor{25] subsequently state
pic turbulence: arE and anH for each of thev/b and + without proof the result that only one such function is re-
tensors. This is to be contrasted with the general case wherglired in general
16 such functions are required. Chandrasekhdi7] showed that axisymmetric systems that
In all cases the trace reduces to dependence on a singdge also mirror symmetric have only two independent scalar
scalar functionS,,(k) =2E(k). The trace of the minus ten- generating functiongfor normal correlation tensorsin our
sor is identically zero, so that there is no helicity of the notation this corresponds to the vanishing of theand H
electric field in isotropic turbulence. Note that, except for thefunctions.
minus tensor, isotropic turbulence does not preclude the
presence of helicityd. As has been remarked upon, the van- D. Two-dimensional symmetry

ishing of H™ for isotropic turbulence means that no . . .
ensemble-averaged induced electric field exists in the ab- Turbulence has two-dimensiongD) symmetry(with re

Lo spect to a single fixed directipnf all averaged quantities
sence of preferred directions. d X ) .
epending orv andb are independent of coordinates parallel
to the fixed direction. Irk space this constrains all excited
wave vectors to be perpendicular to the axis of symmetry
Turbulence is mirror, or reflection, symmetric with re- (again taken to be parallel &), so thatS;; (k) is zero unless
spect to a poinfor a plane if all averaged quantities depend- e-k=0. In the case of the reduced MHD description the
ing onv andb are invariant under reflection of these fields collapse to near two dimensionality is associated with a pre-
through the pointor the plang Thus the correlation tensors ferred direction induced by a strong uniform magnetic field
associated with mirror-symmetric turbulence can contain[34,35. For the two-dimensional case, EQ0) then reduces
only terms exhibitingoverall even parity ink [note that to
while earlier workers(see, e.g.[2,4,7,9) included mirror

A. Isotropy

B. Mirror symmetry

symmetry in the definition of isotropy, this is not current B kik; ) i

practicd. Thus the three helicitield, , H,, andH ™ that are Si(k)=| &ij— e E(k) —eiekF (k) —i[e(exk);

a measure of mirror asymmetry are all identically zero, as are

E~, F~, andC™ (Table Iil). +ej(e><k)i]k2C(k)+ieijakaH(k), (36)

As far as the trace is concerned, the “normal” tensors are

unaffected by the presence or absence of mirror symmetry. . .
In stark cont)r/ast topthisS’ collapses to zero when ):'nirror r)(/vherekzkl , the wave vector in the plane perpendicular to
ac P e. (This restriction can also be accomplished using Difac

symmetry is imposed. Indeed, for the minus tensor, the Onl)functions) Note that we may have helicity, but it influences

term that remains is the antisymmetric piece, which has been : . .
: k . only those correlations that involve exactly one field compo-
shown to contain the spectrum of the electric potential. The

) ) . nent in thee direction. Theaxisymmetrictwo-dimensional

anomalous nature of the minus tensor is particularly clearl% . . L

. N odel is now obtained by further specializing to scalar func-
revealed when we consider turbulence that is mirror symmet- .
ric ions that depend only upon the magnitudekof.
' The above model is sometimes called2?’ because it
involves two components of wave vector but three compo-
nents of the field. Insisting that the fluctuation amplitudes are
Turbulence is axisymmetrigvith respect to a fixed axis also perpendicular te yields the spectral tensor appropriate

if all averaged quantities depending erandb are invariant  for the usual definition of 2D turbulence, wherein all activity

C. Axisymmetry and the presence of a mean field
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is confined to a plane with normal vecter the tensor correlations for separation vectors along a single

Cartesian directiony,, say. The method for measurement is
the simple generalization of the technique for extraction of

E(k). (37) reduced magnetic helicity specfrb] and is summarized by
the formula

This is simplest to see by considering a particular Cartesian IM{Sys(ky)}

coordinate system, witkin the 3 direction, say. Then, since Hed(k,) = BalCe it 1 (39)
k=0, it follows thatS;;=E—k2F, and as this is energy in Ky

components parallel to the symmetry axis we require it to be red_ , . .
zero. Consideration 06,3 and Sy, leads to the conclusion Where H™°=/H(K)dkxdks. As with the original helicity
that H=C=0. Physically, this geometry is believed to be formula, this is valid for homogeneous turbulence with arbi-

relevant in situations where a strong uniform magnetic fieldrary rotational symmetry. . . . .
threads a turbulentmagnetofiuid [34—39. Even for the A quantity of the above type that is of particular interest is

nonaxisymmetric case, however, the autocorrelation tensdpe in.duc.ed glectric field. As shown .in Sec. V_I’ treean
for (say the magnetic field fluctuation, in this pure 2D tur- €léctric field induced by the fluctuating velocity and mag-
netic fields is related to the antisymmetric part of the minus

bulence, is completely specified by a single scalar function. ) - |
tensor, i.e.,J;j(r=0)=— €&, With £,=—=V P(r). In
terms of the spectral tensorg,(k)=—ik,®(k), with
H™ (k)=® (k) the spectrum of the electric potential. Hence
Finally, we consider the slab geometry. This is a particu«nowledge of the off-diagonal componentsRyf yields the
lar case of axisymmetric turbulence, where the excited wavehduced electric field. Values at separation0 are the com-
vectors are parallel te, so thate-k=*k andexk=0. For  ponents of the average induced electric field, while the cor-
such symmetries, all dependence @rdrops out and, con- relations at nonzers can be thought of as a correlation
sidering again the coordinate system witin the 3 direc-  fyunction associated with the electric fie[tote that the ter-
tion, it can be shown that the factor multiplyifigis always  minology “electric field correlation function” would ordi-
zero. Hence only the energy and helicity spectra contributarily be associated with a fourth-rank correlatieee be-

O — @_e.e.
1 k2 1™~]

Sij(k)=

E. Slab symmetry

to the slab spectral tenger: low).] Given data intervals of sufficient length and quality, it
K is straightforward to calculate the appropriate correlation ten-
| o KKy . sor and then extract the induced efsée, e.g.[41]). How-
S (0= g k2 E(k) +ieijakoH (k). (38 ever, it seems not to have been properly appreciated that the

separate components of the induced electric field are related
In magnetohydrodynamics, slab fluctuations often correto the single underlying fundamental quantifk). In fact,
spond to(large-amplitudg Alfvén waves propagating along because of this structure the induced electric field provides
a uniform magnetic field parallel ta Such waves are exact additional information in homogeneous turbulence. As we
solutions of the incompressible nondissipative MHD equahow show, the spectrum af~ can be used to construct a
tions and have been observed in laboratory and space plasteasure of the spectral anisotropy&f
mas (see, e.g.[24]). Recent evidence has indicated that From Eq.(20) we haveJd,4(k) =ik;H ™ (k), etc. Integrat-
MHD turbulence in the solar wind may be reasonably welling this last equation over ald yields J,5(r=0)= — &;. Now
described as a superposition of slab and 2D fluctuafib8s  suppose that the observation direction and the 1 direction

Differences in the structural form of the 2D and slab corre-coincide. Integratingreducing over the 2 and 3 directions
lation tensors permit direct observational evaluation of thishen gives
hypothesid40].

—,red
23

i
red - - —
VIll. MEASUREMENT ISSUES P (ky) = klf Yo K)dkadke= =1 =

(40)

Some results of the previous sections are now Cons'derelgloreover, reducing tha;, andJ;; components yields quan-

within the context of data analys_is. Our m_ain results are ®Xiities that can be interpreted as mean wave numbers associ-
pected to be of very hroad applicability since we have Pr€4ted with the directional components of the electric field. For
sented what we believe to be the most general form of th%xample a meak. can be defined as

’ 3

second-rank homogeneous MHD correlations and as such we
do not expect to anticipate all eventual applications at this

time. However, we presently have in mind specific applica- f ks® (k)dk,dks J5;7%%k,)
tions involving properties of the solar wind, for which exten- k_3: =k, 1} 5 ! . (41)
sive plasma and magnetic field datasets are available. f @ (K)dk,dk J53"%% k)

A general result, pertinent to all four basic tensors, is that 28

the index-antisymmetric part of each spectral tensor o

(S°,S*) is of the formi g;; .k, H(k), which involves only ~ Similarly, we can definek,/k;=J3"%ky)/J53"% k).

one scalar. The functioH is usually a proper scaldexcept Thus, because the underlying fields are solenoidal, it is pos-
for S™ when it is pseudoscalaand in all cases its reduced sible to obtain information about the spectrum of the electric
spectrum(and bulk valug are obtained easily from single- field in directionsperpendicularto the measurement direc-
point, frozen-in measurements, which provide the values ofion. For practical situations it is not yet clear how best to
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normalize these quantities. We are attempting to extract such TABLE IV. Some correlation functions and spectral matrices in

information from some available solar wind datasets. terms of Elsaser variables. Note that these matrices typically are
It was also shown in Sec. VI that for isotropic turbulenceneither a pure tensor nor a pure pseudoterBr= R~ R" is the

the induced electric field vanishes. In addition, the inducecnergy difference tens¢20,49-51.

electric field spectrum, as defined above, also vanishes ex=

actly for isotropic fluctuations. The simplest way to see this o Homogeneity
is to notice that the electric potential spectrdrgk) is odd ~ Symbol  Definition  v-b form condition
n Forisouele ctatons s scatr ustbe 8 ooy ) (s 51 misam  H 00
. . = +,—1 v, — g
Aij(r) (77 z") Rij — 2Rj] Aji(r)=As(=r)

tained in ordinary space, where one invokes the property that i b b —
®(r) is odd inr, while isotropy demands that the same func-2ii(r) (z''z7)  Ri+aRy™
tion depend only upofr|. In addition, if the fluctuations are Fii(r) (Aj+Ryy 20543 Fij(r)=F;j(=r)
Gaussian, thed, s is not an independent parameter. Com-G;(r) (Ajj—A;)) 23741} Gij(r)=—=Gyj(=r)
paring these theoretical predictions rand &, s to obser-
vationally determined values may provide a useful measure
of the extent to which the fluctuations depart from isotropicferred direction is irrelevant as far as the structure of the
and Gaussian distributions. correlation tensors is concerned. This follows because com-
In an analysis of solar wind fluctuations in terms of El- ponents ofe only appear in product pairs and as such are
sasser variables Tat al.[42] found that frequency spectra of immune to an overall sign change®fThis result, as well as
the helicity of the electric field, which they denote by the statement we call theorem AA, corrects earlier W@k
eS(f), equivalent to the reduced form of o& (k), have and restores the intuitive idea of dependence on a single
both positive and negative contributions and that there is alsdirection being a unique geometrical concept.
a fairly wide scatter in the data points, no clean power laws Most of the above results may also be expressed in terms
being evident. The presence of both signs in such spectra &f Elsasser variables. Clearly, this may be accomplished by
of course necessary to ensure that when the integration oveither (a) substitutingz®=v=b into the final forms given
all wave numbergfrequenciesis performed, the net result above or(b) starting with correlation functions defined in
will be zero, in accordance with the results of Sec. VI. terms of thez* (e.g., Hﬁz(zfzf’)) and proceeding from
there. These forms may be more convenient in some appli-
cations, e.g., for solar wind fluctuations. For completeness,
we include in Table IV a summary of some of our main
In this paper we have presented the complete structure (5esults"transcribed to the Elser representation. Note that
second-rank Cartesian correlation tensors involving a solethe Elsaser correlation matrices are not proper tensors be-
noidal vector fieldv and a solenoidal pseudovector fildd  cause they mix contributions that are invariant under the full
Four basic correlation tensors need to be described, involvotation group with contributions that reverse sign under im-
ing the autocorrelations and the properly symmetrized an@roper rotations.
antisymmetrized cross correlations. Each of the basic corre-
lation tensors depends upon exactly four underlying scalar ACKNOWLEDGMENTS
(or pseudoscalafunctions, sometimes known as generating
functions. In each case precisely one generating function is We thank C. W. Smith and J. W. Bieber for enlightening
connected with the index-antisymmetric part of the correlaconversations. This work was supported in part by NSF
tion tensor and three are associated with the symmetric pofsrant No. ATM-9318728 at Bartol and by the United King-
tion. dom PPARC Grant No. GR/K98711 and the Nuffield Foun-
In the course of this development, we have examinedlation Grant No. SCI/180/94/400.
carefully several important misleading or incorrect state-
ments that have r_emained uncorrected in the Ii@eratur(_a of the APPENDIX A: BASIC RESULTS
theory of correlation tensors for homogenedasisotropig
turbulence. Most of these problems have arisen because of For completeness we list here some of the more elemen-
confusion over the circumstances in which the generatingary results, many of which are well known and have been
scalar functions can be, or must be, pseudoscalars. We algiven before(see, e.g.[4,8,29). First, however, it is useful
described how pseudoscalar functions arise from one-poirtb draw attention to some semantic distinctions. The terms
correlations, such as helicities. evenandoddrefer to the behavior of a function under rever-
Although these results are of a general nature, our intensal of the spatial separatian——r. The full operation of
tion is to associate the fieldsandv with the magnetic and coordinate inversion involves not oniy— —r, but mapping
(incompressiblevelocity fields, respectively, that appear in all vectors that transform like the position vector to their
magnetohydrodynamics turbulence. The general correlatiorgpposites and is equivalent to an improper rotatieflec-
presented here provide compact and complete Cartesian refien followed by rotation. Thus the evenness or oddness
resentations of the spectra and two-point correlation func¢“parity” ) of a scalar function is distinct from its tensor
tions of relevance in MHD. A number of bulk quantities of transformation character. Equivalent definitions hold for the
interest are also described by the tensors. Fourier space forms.
For axisymmetric homogeneous turbulence we have The proper or improper transformation character of the
shown that the true or pseudotensor character of the préensors plays an important role in their description.Mf

IX. DISCUSSION
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represents a change of basis from one Cartesian coordingtgdex-symmetric even function & Note that byl “* (k) we
system to another, such thatMx, then a proper tensor mean[l~(k)]*. Similar results are obtained for andJ™.
field of rankn, T; ;. ...; (X), transforms under such a change Collectively these imply thas”’® and S* are Hermitian

of basis as (e.9., S=S;i*) while S™ is anti-Hermitian §;=-S;*).
See Tables | and II.
2 = The values of the correlations at zero separation corre-
T cra(X)=M, i M, M, T (MX). o .
asay o X) 1 e2l2 Tz 1, (MX) (AL) spond to bulk quantitieé/olume averagesf interest. These

include the so-called ideal MHEugged invariantd13,44],
If this transformation law holds only for a subset of the which are used to characterize MHD turbulence phenomena
changes of basig.g., rotations but not reflectiontenT is  (see, e.9.[45-47). For 3D homogeneous MHD turbulence
an improper(or pseudp tensor field of rankn (see, e.g., the rugged invariants are thetal (kinetic plus magnetic
[32]). In this context we will userue and pseudoas syn-  energyper unit mas€'°'=EX+ EM=RY (0)/2+ Ribi(O)/Z, the
onyms for proper and improper. cross helicity H=(v-b)/2=R (0)/2, and themagnetic he-
Suppose that a correlation function can be written licity H,=(a-Vxa)/2, whereb=Vxa. Other quadratic
quantities of interest include the helicity of the velocity field
9 H,=(v-VXv) (this is an invariant in 3D hydrodynamics,
AN+ €ijo7 BN+, (A2)  put is not thought to be rugged in the usual sefd) and
* the helicity of the electric current density;=(j-VXj),
where §; is the Kronecker delta anej;, the Levi-Civita which, although not an ideal invariant, rugged or otherwise,
permutation tensor. It is convenient to think of each additiveS Of theoretical importance, in dynamo theory for example
term as consisting of an elementary tensor that has indiceglgzq- The _he“C't"_ES are usually Conr_lected with the index-
multiplied by a(true or pseudpscalar function of . Indeed, antisymmetric portion of the correlation tensqee Sec.
this can be shown to be the case in gengtad]. The parts VD).
with indices are essentially geometrical aspects of the corre-
lation functions. For example&ij—rirj/r2 is an isotropic
form in that contraction with two vectom andc; produces APPENDIX B: SCALAR POTENTIALS
a true scalar that is invariant und& rigid body rotations
(of either the coordinate system or the turbulenaed (b)
coordinate reflections, provided that the three vectors,
andc all transform like the position vector. However, other
isotropic forms can involve pseudoscalars.
Sincev andb are solenoidal we have

rirj
Rij(r)= 5ij_r—2

Consider the solenoidal field(x) =V X A(x), so that in
k spaceb(k) =ik xA(k). Working in ak-dependent coordi-
nate system with an arbitrary uniform unit vecterand
aj(k),j=1,2,3 the components &, we have

az

J _ J _
a_rjRij(r)_a_riRij(r)_O' (A3) :

a
AK)=a,e+i k><e+k—2k><(k><e). (B1)
or equivalently ink space k;S;;(k)=k;S;;(k)=0. Similar

results hold for thel and J tensors, so that the index-

symmetric and -antisymmetric parts are separately solenolt is convenient to associate amwith eachk and in this form
dal. thea’s all have the same dimensions. Thus

Next, homogeneity requires that
RIP(—n)=Ry®(r), Ri(-=1)==Rji(r), (Ad) ]
. 2
as is easily seen by letting—x—r in the definitions. Note b(k)=ikxea; —as]—kx(kxe){-. (B2)

that R~ is anomalous, containing an overall negative sign.
Thel’s andJ’s each satisfy the same homogeneity condition

as their “parent”R. Thek-space forms are obtained by let- so there are really only two independent complex scalar po-
ting R—S andr—k. tentials defining a solenoidal field sineg can be absorbed

If f(x) is real then its Fourier transform satisfies the real-into a,. This is clear geometrically since it only requires two
ity condition f(—k) =f* (k), where an asterisk denotes com- jndependent vectors to span a plane perpendicular khe
plex conjugation. Using this property and the assumedwo potentials generate tfpoloidal andtoroidal components
equivalence of ensemble and space averagiiaginvocation  of the field(see, e.g11]). A customary mnemonic notation

of ergodicity), it can be shown that, for examp]é3], is P(k)=a, andT(k)=a,—as. We refer toP as the field’s
poloidal potential and™ as its toroidal potential. Ix space,
Sij (k) 8(k+p)=(vi(p)vj(K)). (A5)  whereP and T are no longer dimensionally matched, we
have

A consideration of the consequences of homogeneity, in-
dex symmetry, and reality forl ﬁ(k) shows that
15 (K)=1;;(=k)==1;(k) and thereforel “(k) is a real b(x)=—VX(exVP)—exVT. (B3)
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